Basic Information
Course Name: Artificial Intelligence Methods for Social Good |
Meeting Days, Times, Location: Tue/Thu 9:30 am – 10:50 am, 3SC (300 S. Craig) 265 |
Semester: Spring, Year: 2023 |
Units: 9/12, Section(s): 17-537/17-737 |
Instructor Information
Name | Dr. Fei Fang |
Contact Info | Email: feifang@cmu.edu |
Office location | Zoom or in-person (TCS 321) |
Office hours | Tue 1:00pm-2:00pm
Secure one to two consecutive slots in advance via Calendly If the OH time does not work for you, you can make an appointment for a 30-minute session by emailing Linda Moreci (laf20@cs.cmu.edu) at least 24 hours in advance |
TA Information
Name | Melrose Roderick |
Contact Info | Email: mroderick@cmu.edu |
Office location | Zoom or in-person (TCS 244) |
Office hours | Thu 3:00pm-4:00pm
If the OH time does not work for you, you can set up a 30-minute meeting via Calendly. |
Course Description
The rapid advance of artificial intelligence (AI) has opened up new possibilities of using AI to tackle the most challenging societal problems today. This course brings together a set of advanced AI methods that allow us to address such challenges and promote social good. We will cover a wide range of AI methods, including:
- Search, Planning, and Optimization: planning and scheduling, convex optimization, mathematical programming;
- Multiagent Systems: computational game theory, mechanism design, human behavior modeling;
- Machine Learning: classification and regression, clustering, probabilistic graphical models, deep learning, reinforcement learning.
In addition to providing a deep understanding of these methods, the course will introduce which societal challenges they can tackle and how through a series of case studies, in various domains including public health, food and agriculture, security, environmental sustainability, etc. The course will also cover special topics such as the ethics of AI, common challenges in AI for Social Good problems, how to measure the impact of AI for Social Good projects, etc.
The course content is designed to not have too much overlap with other AI courses offered at CMU. Although the course is listed within SCS, it should be of interest to students in several other departments, including ECE, EPP, and SDS. The students will work in groups on a project exploring the possibility of using AI to help address a societal problem, with a project report and oral presentation delivered at the end of the semester.
(17537, 9 Units) The students in this 9-unit course are expected to have taken at least three mathematics courses covering linear algebra, calculus, and probability.
(17737, 12 Units) This 12-unit course is only open to graduate students (master’s and Ph.D. students) with previous programming experience and background knowledge in artificial intelligence.
Please see the instructor if you are unsure whether your background is suitable for the course.
Learning Objectives
At the end of the course, the students should be able to
- Identify societal challenges that can potentially be tackled by AI methods, and determine which AI methods can be applied
- Describe the AI methods covered in the course, including the basic concepts, the key algorithms, and the commonly-used implementation of the methods
- Model the societal challenges as mathematical problems that AI techniques can be applied and propose how to adjust and modify the AI techniques to fit the problems
- Describe the evaluation criteria and methodologies of applying AI methods for social good
- Deliver a report on the course project and present the work through an oral presentation
Course Schedule (Subject to Change)
Last update: 3/31/2023 (Slides are available on Canvas only)
Learning Resources
The online textbook can be found here.
Slides, references, and additional resources will be provided on Canvas.
Assessments
The final course grade will be calculated using the following categories:
Assessment | Percentage of Final Grade |
Class Participation | 10% |
Paper Reading Assignment | 20% |
Online Homework | 20% |
Course Project | 50% |
- Class participation. The grading of the class participation will be mostly based on attendance, checked by in-class polls and asking and answering questions in class. Other factors include asking and answering questions on Piazza.
- Paper reading assignment. The course will require all students to complete several paper reading assignments individually. In each assignment, the students are required to provide a summary of the paper/article, questions, and discussion. The assignments will be submitted through Canvas and will be peer-reviewed, but the final score will be provided by the instructor and the TA.
- Online homework. The course will require all students to complete several online homework assignments individually. Each assignment will involve checking the understanding of basic concepts and working through the algorithms presented in class on example problems. Most questions are multiple-choice questions or numerical answer questions but the students need to submit explanations separately.
- Course project. The students will work in small groups (1-3 students in each group) on a project exploring the possibility of using AI to help address a social good problem. The students are expected to focus on one or more societal challenges, propose models and AI-based solutions to tackle the challenges and evaluate the solutions. The students are required to submit a project report through Canvas, deliver an oral presentation in class, and provide a short video introducing the project. The progress of projects will be checked through the Project Proposal, Project Progress Report, Oral Presentation, and Final Project Report. The proposal and progress report will be peer-reviewed. The presentation and the final report will be evaluated by the instructor and TA directly.
Students will be assigned final letter grades according to the following table.
Grade | Range of Points |
A | [90,100], A-: [90,93) A: [93,97) A+: [97,100] |
B | [80,90), B-: [80,83) B: [83,87) B+: [87,90) |
C | [70,80), C-: [70,73) C: [73,77) C+: [77,80) |
D | [60,70), D: [60,67) D+: [67,70) |
R (F) | [0,59) |
Grading Policies
- Late-work policy: All late submissions will be graded with a 0.7 discount.
- Re-grade policy: To request a re-grade, the student needs to write an email to the instructor titled “Re-grade request from [Student’s Full Name]” within one week of receiving the graded assignment.
- Attendance and participation policy: Attendance and participation will be a graded component of the course. The grading of the class participation will be mostly based on attendance, checked by in-class quizzes and asking and answering questions in class. Other factors include asking and answering questions on Piazza.
Course Policies
- Academic integrity & collaboration: For both paper reading assignments and written answer assignments, a student can discuss with other students, but they need to specify the names of the students they discussed with in the submission, and complete the calculations and writing of explanations, summary, and questions on his own. For the course project, the students can discuss and collaborate with others (including students, faculty members, and domain experts), but the students need to give proper credits to whoever involved, and report the contributions of each group member in the final report and presentations, which will be considered in the grading. For assignments and the course project, it is allowed to use publicly available code packages but the source of code package needs to be specified in the submission. Plagiarism is not allowed. The policy is motivated by CMU policy on academic integrity which can be found here.
- Mobile devices: Mobile devices are allowed in class. Cellphones should be in silent mode. Students who use tablets in upright positions and laptops will be asked to sit in the back rows of the classroom.
- Accommodations for students with disabilities: If you have a disability and require accommodations, please contact Catherine Getchell, Director of Disability Resources, 412-268-6121, getchell@cmu.edu. If you have an accommodations letter from the Disability Resources office, I encourage you to discuss your accommodations and needs with me as early in the semester as possible. I will work with you to ensure that accommodations are provided as appropriate.
- Statement on student wellness: As a student, you may experience a range of challenges that can interfere with learning, such as strained relationships, increased anxiety, substance use, feeling down, difficulty concentrating and/or lack of motivation. These mental health concerns or stressful events may diminish your academic performance and/or reduce your ability to participate in daily activities. CMU services are available, and treatment does work. You can learn more about confidential mental health services available on campus here. Support is always available (24/7) from Counseling and Psychological Services: 412-268-2922.