Policy Learning for Continuous Space Security Games using Neural Networks

Nitin Kamra¹, Umang Gupta¹, **Fei Fang**², Yan Liu¹, Milind Tambe¹
University of Southern California¹, Carnegie Mellon University²
nkamra, umanggup, yanliu.cs, tambe@usc.edu¹, **feifang@cmu.edu**²

Stackelberg Security Game (SSG)

▶ A leader-follower game with broad applications

Physical Infrastructure

Environmental Resources

Transportation Networks

Endangered Wildlife

Cyber Systems

Fisheries

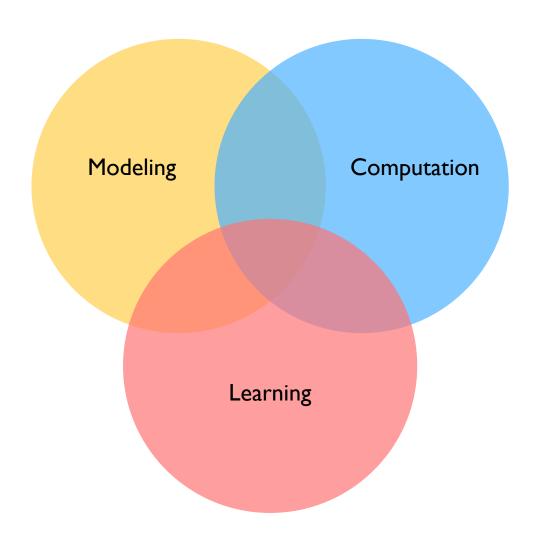
Stackelberg Security Game (SSG)

A leader-follower game with broad applications

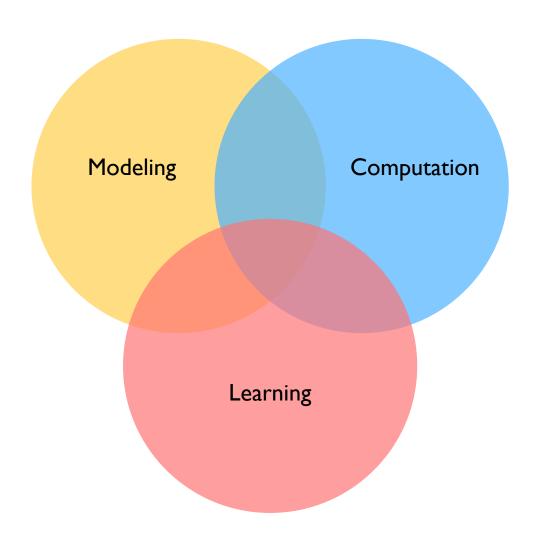
- Basic model:
 - Defender allocate limited resources to protect targets
 - Attacker choose a target to attack after surveillance
 - Goal: Find optimal defender strategy

Adversary

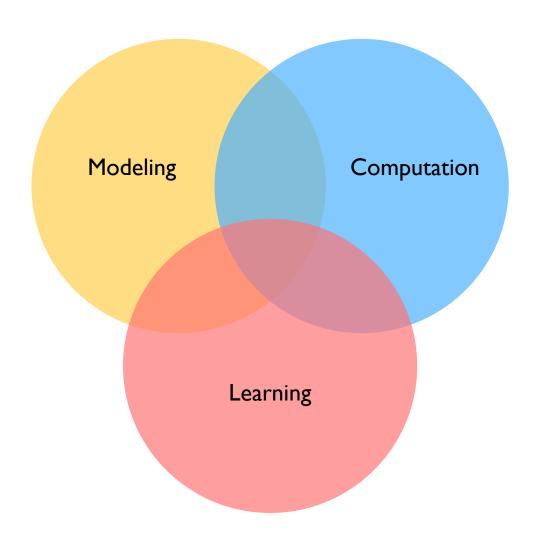
			Target #I	Target #2
	55.6%	Target #I	5, -3	-1, 1
Defender	44.4%	Target #2	-5, 4	2, -I



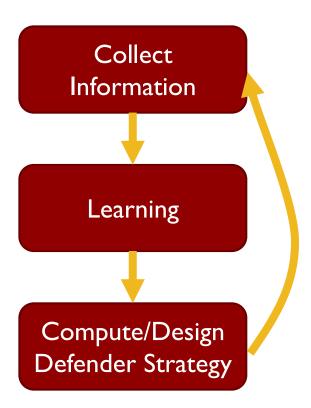
- Model and address complex real world problems
 - Continuous space/time
 - ▶ Fang et al., 2013; Gan et al., 2017
 - Repeated/Sequential/Dynamic interaction
 - ▶ Fang et al., 2015; Lisy et al., 2016
 - Information
 - Durkota et al., 2015; Xu et al., 2018
- Solution approaches for continuous space/time
 - Discretization
 - Fang et al., 2016
 - Exploit special spatio-temporal structure, e.g., symmetric circular shaped forest
 - ▶ Johnson et al., 2012



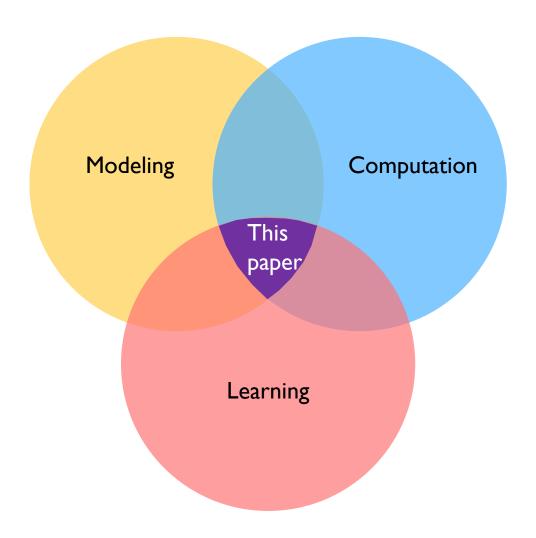
- Compute optimal defender strategy
 - Scaling up
 - ▶ Bosanský et al., 2015; Kiekintveld et al., 2009; Basilico et al., 2012
 - Uncertainty & Robustness
 - Haskell et al., 2014; Jiang et al., 2013; Nguyen et al., 2015; Bo et al., 2011
- Solution approaches for scaling up
 - Mathematical Programming based approaches
 - Conitzer & Sandholm, 2006; Paruchuri et al., 2008; Jain et al., 2011
 - Abstraction
 - ▶ Basak et al., 2016
 - Gradient descent
 - ▶ Amin et al., 2016



- Learn key elements in games
 - Payoff
 - ▶ Blum et al., 2014; Balcan et al., 2015
 - Opponent behavior
 - Yang et al., 2014; Kar et al., 2016;Nguyen et al., 2016; Sinha et al., 2016;Haghtalab et al., 2016



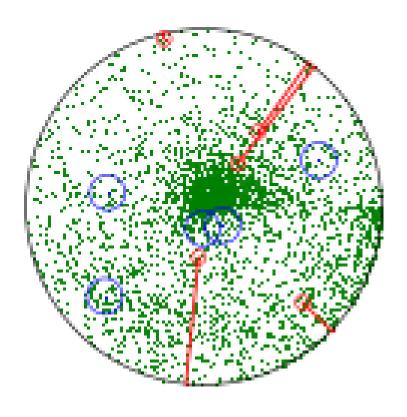
9 2/7/2018



This paper: Compute optimal defender policy through policy learning from self play

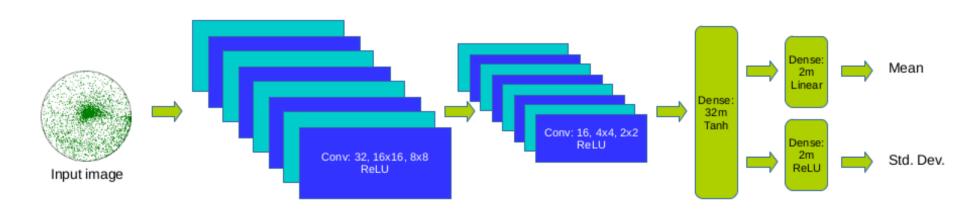
- Contributions
 - A new way of handling continuous space security games
 - Augment existing toolbox for computing optimal strategy
 - Learn a "policy": mapping from game elements to strategy

- Green dots: Valuable trees
- Blue circles: Defender location
- Red circles: Logging locations
- Goal: Find defender strategy or defender policy
 - ► Tree distribution → defender strategy



12 2/7/2018

- Represent defender policy with CNN
 - Image→Mean/Std of radius and angle (→Guard location)
- Attacker's policy represented in a similar way



Algorithm 1: OptGradFP

Initialization. Initialize policy parameters w_D and w_O , replay memory mem;

for $ep in \{0, \ldots, ep_{max}\}$ do

Simulate n_s game play. Sample game setting and actions from current policy π_D and π_O n_s times, save in mem;

Replay for defender. Draw n_b samples from mem, resample defender action from current policy π_D ;

Update parameter for defender. Update defender policy parameter

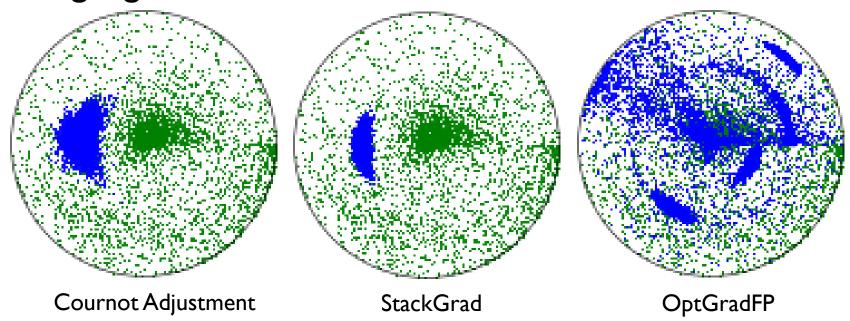
$$\mathbf{w_D} := \mathbf{w_D} + \frac{\alpha_D}{1 + \mathbf{ep} \, \beta_D} * \nabla_{\mathbf{w_D}} J_D;$$

Replay for attacker. Draw n_b samples from mem, resample attacker action from current policy π_O ;

Update parameter for attacker. Update attacker policy parameter

$$\mathbf{w_O} := \mathbf{w_O} + \frac{\alpha_O}{1 + e_D \, \beta_O} * \nabla_{\mathbf{w_O}} J_O$$

Single game state



- Multiple game state
 - Train on 1000 forest states, predict on unseen forest state
 - 7 days for training, Prediction time 90 ms

Summary

- Policy Learning for Continuous Space Security Games using Neural Networks
 - No discretization
 - Policy learning + Fictitious play + Deep learning
 - Shift computation from online to offline

Thank you!

Fei Fang feifang@cmu.edu